Black lives matter.
We stand in solidarity with the Black community.
Racism is unacceptable.
It conflicts with the core values of the Kubernetes project and our community does not tolerate it.
We stand in solidarity with the Black community.
Racism is unacceptable.
It conflicts with the core values of the Kubernetes project and our community does not tolerate it.
This page explains how to configure your DNS Pod(s)A Pod represents a set of running containers in your cluster. and customize the DNS resolution process in your cluster.
You need to have a Kubernetes cluster, and the kubectl command-line tool must be configured to communicate with your cluster. If you do not already have a cluster, you can create one by using Minikube, or you can use one of these Kubernetes playgrounds:
Your cluster must be running the CoreDNS add-on.
Migrating to CoreDNS
explains how to use kubeadm
to migrate from kube-dns
.
Your Kubernetes server must be at or later than version v1.12.
To check the version, enter kubectl version
.
DNS is a built-in Kubernetes service launched automatically using the addon manager cluster add-on.
As of Kubernetes v1.12, CoreDNS is the recommended DNS Server, replacing kube-dns. If your cluster
originally used kube-dns, you may still have kube-dns
deployed rather than CoreDNS.
Note: Both the CoreDNS and kube-dns Service are namedkube-dns
in themetadata.name
field. This is so that there is greater interoperability with workloads that relied on the legacykube-dns
Service name to resolve addresses internal to the cluster. Using a Service namedkube-dns
abstracts away the implementation detail of which DNS provider is running behind that common name.
If you are running CoreDNS as a Deployment, it will typically be exposed as a Kubernetes Service with a static IP address.
The kubelet passes DNS resolver information to each container with the --cluster-dns=<dns-service-ip>
flag.
DNS names also need domains. You configure the local domain in the kubelet
with the flag --cluster-domain=<default-local-domain>
.
The DNS server supports forward lookups (A and AAAA records), port lookups (SRV records), reverse IP address lookups (PTR records), and more. For more information, see DNS for Services and Pods.
If a Pod's dnsPolicy
is set to default
, it inherits the name resolution
configuration from the node that the Pod runs on. The Pod's DNS resolution
should behave the same as the node.
But see Known issues.
If you don't want this, or if you want a different DNS config for pods, you can
use the kubelet's --resolv-conf
flag. Set this flag to "" to prevent Pods from
inheriting DNS. Set it to a valid file path to specify a file other than
/etc/resolv.conf
for DNS inheritance.
CoreDNS is a general-purpose authoritative DNS server that can serve as cluster DNS, complying with the dns specifications.
CoreDNS is a DNS server that is modular and pluggable, and each plugin adds new functionality to CoreDNS. This can be configured by maintaining a Corefile, which is the CoreDNS configuration file. As a cluster administrator, you can modify the ConfigMapAn API object used to store non-confidential data in key-value pairs. Can be consumed as environment variables, command-line arguments, or configuraton files in a volume. for the CoreDNS Corefile to change how DNS service discovery behaves for that cluster.
In Kubernetes, CoreDNS is installed with the following default Corefile configuration:
apiVersion: v1
kind: ConfigMap
metadata:
name: coredns
namespace: kube-system
data:
Corefile: |
.:53 {
errors
health {
lameduck 5s
}
ready
kubernetes cluster.local in-addr.arpa ip6.arpa {
pods insecure
fallthrough in-addr.arpa ip6.arpa
ttl 30
}
prometheus :9153
forward . /etc/resolv.conf
cache 30
loop
reload
loadbalance
}
The Corefile configuration includes the following plugins of CoreDNS:
http://localhost:8080/health
. In this extended syntax lameduck
will make the process unhealthy then wait for 5 seconds before the process is shut down.ttl
allows you to set a custom TTL for responses. The default is 5 seconds. The minimum TTL allowed is 0 seconds, and the maximum is capped at 3600 seconds. Setting TTL to 0 will prevent records from being cached.pods insecure
option is provided for backward compatibility with kube-dns. You can use the pods verified
option, which returns an A record only if there exists a pod in same namespace with matching IP. The pods disabled
option can be used if you don't use pod records.http://localhost:9153/metrics
in Prometheus format (also known as OpenMetrics).You can modify the default CoreDNS behavior by modifying the ConfigMap.
CoreDNS has the ability to configure stubdomains and upstream nameservers using the forward plugin.
If a cluster operator has a Consul domain server located at 10.150.0.1, and all Consul names have the suffix .consul.local. To configure it in CoreDNS, the cluster administrator creates the following stanza in the CoreDNS ConfigMap.
consul.local:53 {
errors
cache 30
forward . 10.150.0.1
}
To explicitly force all non-cluster DNS lookups to go through a specific nameserver at 172.16.0.1, point the forward
to the nameserver instead of /etc/resolv.conf
forward . 172.16.0.1
The final ConfigMap along with the default Corefile
configuration looks like:
apiVersion: v1
kind: ConfigMap
metadata:
name: coredns
namespace: kube-system
data:
Corefile: |
.:53 {
errors
health
kubernetes cluster.local in-addr.arpa ip6.arpa {
pods insecure
fallthrough in-addr.arpa ip6.arpa
}
prometheus :9153
forward . 172.16.0.1
cache 30
loop
reload
loadbalance
}
consul.local:53 {
errors
cache 30
forward . 10.150.0.1
}
The kubeadm
tool supports automatic translation from the kube-dns ConfigMap
to the equivalent CoreDNS ConfigMap.
Note: While kube-dns accepts an FQDN for stubdomain and nameserver (eg: ns.foo.com), CoreDNS does not support this feature. During translation, all FQDN nameservers will be omitted from the CoreDNS config.
CoreDNS supports the features of kube-dns and more.
A ConfigMap created for kube-dns to support StubDomains
and upstreamNameservers
translates to the forward
plugin in CoreDNS.
Similarly, the Federations
plugin in kube-dns translates to the federation
plugin in CoreDNS.
This example ConfigMap for kube-dns specifies federations, stubdomains and upstreamnameservers:
apiVersion: v1
data:
federations: |
{"foo" : "foo.feddomain.com"}
stubDomains: |
{"abc.com" : ["1.2.3.4"], "my.cluster.local" : ["2.3.4.5"]}
upstreamNameservers: |
["8.8.8.8", "8.8.4.4"]
kind: ConfigMap
The equivalent configuration in CoreDNS creates a Corefile:
federation cluster.local {
foo foo.feddomain.com
}
abc.com:53 {
errors
cache 30
forward . 1.2.3.4
}
my.cluster.local:53 {
errors
cache 30
forward . 2.3.4.5
}
The complete Corefile with the default plugins:
.:53 {
errors
health
kubernetes cluster.local in-addr.arpa ip6.arpa {
pods insecure
fallthrough in-addr.arpa ip6.arpa
}
federation cluster.local {
foo foo.feddomain.com
}
prometheus :9153
forward . 8.8.8.8 8.8.4.4
cache 30
}
abc.com:53 {
errors
cache 30
forward . 1.2.3.4
}
my.cluster.local:53 {
errors
cache 30
forward . 2.3.4.5
}
To migrate from kube-dns to CoreDNS, a detailed blog article is available to help users adapt CoreDNS in place of kube-dns.
You can also migrate using the offical CoreDNS deploy script.