Black lives matter.
We stand in solidarity with the Black community.
Racism is unacceptable.
It conflicts with the core values of the Kubernetes project and our community does not tolerate it.
We stand in solidarity with the Black community.
Racism is unacceptable.
It conflicts with the core values of the Kubernetes project and our community does not tolerate it.
This document catalogs the communication paths between the control plane (really the apiserver) and the Kubernetes cluster. The intent is to allow users to customize their installation to harden the network configuration such that the cluster can be run on an untrusted network (or on fully public IPs on a cloud provider).
Kubernetes has a "hub-and-spoke" API pattern. All API usage from nodes (or the pods they run) terminate at the apiserver (none of the other control plane components are designed to expose remote services). The apiserver is configured to listen for remote connections on a secure HTTPS port (typically 443) with one or more forms of client authentication enabled. One or more forms of authorization should be enabled, especially if anonymous requests or service account tokens are allowed.
Nodes should be provisioned with the public root certificate for the cluster such that they can connect securely to the apiserver along with valid client credentials. For example, on a default GKE deployment, the client credentials provided to the kubelet are in the form of a client certificate. See kubelet TLS bootstrapping for automated provisioning of kubelet client certificates.
Pods that wish to connect to the apiserver can do so securely by leveraging a service account so that Kubernetes will automatically inject the public root certificate and a valid bearer token into the pod when it is instantiated.
The kubernetes
service (in all namespaces) is configured with a virtual IP address that is redirected (via kube-proxy) to the HTTPS endpoint on the apiserver.
The control plane components also communicate with the cluster apiserver over the secure port.
As a result, the default operating mode for connections from the nodes and pods running on the nodes to the control plane is secured by default and can run over untrusted and/or public networks.
There are two primary communication paths from the control plane (apiserver) to the nodes. The first is from the apiserver to the kubelet process which runs on each node in the cluster. The second is from the apiserver to any node, pod, or service through the apiserver's proxy functionality.
The connections from the apiserver to the kubelet are used for:
These connections terminate at the kubelet's HTTPS endpoint. By default, the apiserver does not verify the kubelet's serving certificate, which makes the connection subject to man-in-the-middle attacks, and unsafe to run over untrusted and/or public networks.
To verify this connection, use the --kubelet-certificate-authority
flag to provide the apiserver with a root certificate bundle to use to verify the kubelet's serving certificate.
If that is not possible, use SSH tunneling between the apiserver and kubelet if required to avoid connecting over an untrusted or public network.
Finally, Kubelet authentication and/or authorization should be enabled to secure the kubelet API.
The connections from the apiserver to a node, pod, or service default to plain HTTP connections and are therefore neither authenticated nor encrypted. They can be run over a secure HTTPS connection by prefixing https:
to the node, pod, or service name in the API URL, but they will not validate the certificate provided by the HTTPS endpoint nor provide client credentials so while the connection will be encrypted, it will not provide any guarantees of integrity. These connections are not currently safe to run over untrusted and/or public networks.
Kubernetes supports SSH tunnels to protect the control plane to nodes communication paths. In this configuration, the apiserver initiates an SSH tunnel to each node in the cluster (connecting to the ssh server listening on port 22) and passes all traffic destined for a kubelet, node, pod, or service through the tunnel. This tunnel ensures that the traffic is not exposed outside of the network in which the nodes are running.
SSH tunnels are currently deprecated so you shouldn't opt to use them unless you know what you are doing. The Konnectivity service is a replacement for this communication channel.
Kubernetes v1.18 [beta]
As a replacement to the SSH tunnels, the Konnectivity service provides TCP level proxy for the control plane to cluster communication. The Konnectivity service consists of two parts: the Konnectivity server and the Konnectivity agents, running in the control plane network and the nodes network respectively. The Konnectivity agents initiate connections to the Konnectivity server and maintain the network connections. After enabling the Konnectivity service, all control plane to nodes traffic goes through these connections.
Follow the Konnectivity service task to set up the Konnectivity service in your cluster.