Black lives matter.
We stand in solidarity with the Black community.
Racism is unacceptable.
It conflicts with the core values of the Kubernetes project and our community does not tolerate it.
We stand in solidarity with the Black community.
Racism is unacceptable.
It conflicts with the core values of the Kubernetes project and our community does not tolerate it.
Kubernetes v1.16 [alpha]
kube-scheduler는 RequestedToCapacityRatioResourceAllocation
우선 순위 기능을 사용해서 확장된 리소스와 함께 리소스의 빈 패킹이 가능하도록 구성할 수 있다. 우선 순위 기능을 사용해서 맞춤 요구에 따라 kube-scheduler를 미세 조정할 수 있다.
쿠버네티스 1.15 이전에는 Kube-scheduler가 CPU 및 메모리와 같은 리소스의 용량 대비 요청 비율을 기반으로 노드의 점수를 매기는 것을 허용했다. 쿠버네티스 1.16은 우선 순위 기능에 새로운 파라미터를 추가해서 사용자가 용량 대비 요청 비율을 기반으로 노드에 점수를 매기도록 각 리소스의 가중치와 함께 리소스를 지정할 수 있다. 이를 통해 사용자는 적절한 파라미터를 사용해서 확장된 리소스를 빈 팩으로 만들수 있어 대규모의 클러스터에서 부족한 리소스의 활용도가 향상된다. RequestedToCapacityRatioResourceAllocation
우선 순위 기능의 동작은 requestedToCapacityRatioArguments
라는 구성 옵션으로 제어할 수 있다. 이 인수는 shape
와 resources
두 개의 파라미터로 구성된다. 셰이프(shape)는 사용자가 utilization
과 score
값을 기반으로 최소 요청 또는 최대 요청된 대로 기능을 조정할 수 있게 한다. 리소스는
점수를 매길 때 고려할 리소스를 지정하는 name
과 각 리소스의 가중치를 지정하는 weight
로 구성된다.
다음은 확장된 리소스 intel.com/foo
와 intel.com/bar
에 대한 requestedToCapacityRatioArguments
를 빈 패킹 동작으로 설정하는 구성의 예시이다.
{
"kind" : "Policy",
"apiVersion" : "v1",
...
"priorities" : [
...
{
"name": "RequestedToCapacityRatioPriority",
"weight": 2,
"argument": {
"requestedToCapacityRatioArguments": {
"shape": [
{"utilization": 0, "score": 0},
{"utilization": 100, "score": 10}
],
"resources": [
{"name": "intel.com/foo", "weight": 3},
{"name": "intel.com/bar", "weight": 5}
]
}
}
}
],
}
이 기능은 기본적으로 비활성화되어 있다.
shape
는 RequestedToCapacityRatioPriority
기능의 동작을 지정하는 데 사용된다.
{"utilization": 0, "score": 0},
{"utilization": 100, "score": 10}
위의 인수는 사용률이 0%인 경우 점수는 0, 사용률이 100%인 경우 10으로 하여, 빈 패킹 동작을 활성화한다. 최소 요청을 활성화하려면 점수 값을 다음과 같이 변경해야 한다.
{"utilization": 0, "score": 100},
{"utilization": 100, "score": 0}
resources
는 기본적으로 다음과 같이 설정되는 선택적인 파라미터이다.
"resources": [
{"name": "CPU", "weight": 1},
{"name": "Memory", "weight": 1}
]
다음과 같이 확장된 리소스를 추가하는 데 사용할 수 있다.
"resources": [
{"name": "intel.com/foo", "weight": 5},
{"name": "CPU", "weight": 3},
{"name": "Memory", "weight": 1}
]
가중치 파라미터는 선택 사항이며 지정되지 않은 경우 1로 설정 된다. 또한, 가중치는 음수로 설정할 수 없다.
이 섹션은 이 기능 내부의 세부적인 사항을 이해하려는 사람들을 위한 것이다. 아래는 주어진 값의 집합에 대해 노드 점수가 계산되는 방법의 예시이다.
Requested Resources
intel.com/foo : 2
Memory: 256MB
CPU: 2
Resource Weights
intel.com/foo : 5
Memory: 1
CPU: 3
FunctionShapePoint {{0, 0}, {100, 10}}
Node 1 Spec
Available:
intel.com/foo : 4
Memory : 1 GB
CPU: 8
Used:
intel.com/foo: 1
Memory: 256MB
CPU: 1
Node Score:
intel.com/foo = resourceScoringFunction((2+1),4)
= (100 - ((4-3)*100/4)
= (100 - 25)
= 75
= rawScoringFunction(75)
= 7
Memory = resourceScoringFunction((256+256),1024)
= (100 -((1024-512)*100/1024))
= 50
= rawScoringFunction(50)
= 5
CPU = resourceScoringFunction((2+1),8)
= (100 -((8-3)*100/8))
= 37.5
= rawScoringFunction(37.5)
= 3
NodeScore = (7 * 5) + (5 * 1) + (3 * 3) / (5 + 1 + 3)
= 5
Node 2 Spec
Available:
intel.com/foo: 8
Memory: 1GB
CPU: 8
Used:
intel.com/foo: 2
Memory: 512MB
CPU: 6
Node Score:
intel.com/foo = resourceScoringFunction((2+2),8)
= (100 - ((8-4)*100/8)
= (100 - 25)
= 50
= rawScoringFunction(50)
= 5
Memory = resourceScoringFunction((256+512),1024)
= (100 -((1024-768)*100/1024))
= 75
= rawScoringFunction(75)
= 7
CPU = resourceScoringFunction((2+6),8)
= (100 -((8-8)*100/8))
= 100
= rawScoringFunction(100)
= 10
NodeScore = (5 * 5) + (7 * 1) + (10 * 3) / (5 + 1 + 3)
= 7